LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanism of Antioxidant Activity of Betanin, Betanidin and Respective C15-Epimers via Shape Theory, Molecular Dynamics, Density Functional Theory and Infrared Spectroscopy

Photo from wikipedia

Betanin and betanidin are compounds with extensive interest; they are effectively free radical scavengers. The present work aims to elucidate the differences between the mechanism of the antioxidant activity of… Click to show full abstract

Betanin and betanidin are compounds with extensive interest; they are effectively free radical scavengers. The present work aims to elucidate the differences between the mechanism of the antioxidant activity of betanin, betanidin, and their respective C15-epimers. Shape Theory establishes comparisons between the molecules’ geometries and determines parallelisms with the descriptors BDE, PA, ETE IP, PDE, and infrared spectra (IR) obtained from the molecule simulations. Furthermore, the molecules were optimized using the B3LYP/6-31+G(d,p) protocol. Finally, the molecular docking technique analyzes the antioxidant activity of the compounds in the complex with the therapeutic target xanthine oxidase (XO), based on a new proposal for the geometrical arrangement of the ligand atoms in the framework of Shape Theory. The results obtained indicate that the SPLET mechanism is the most favorable in all the molecules studied and that the first group that loses the hydrogen atom in the four molecules is the C17COOH, presenting less PA the isobetanidin. Furthermore, regarding the molecular docking, the interactions of these compounds with the target were favorable, standing out to a greater extent the interactions of isobetanidin with XO, which were analyzed after applying molecular dynamics.

Keywords: theory; spectroscopy; antioxidant activity; shape theory; betanin betanidin

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.