LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Isolation and Structural Elucidation of Compounds from Pleiocarpa bicarpellata and Their In Vitro Antiprotozoal Activity

Photo from wikipedia

Species of the genus Pleiocarpa are used in traditional medicine against fever and malaria. The present study focuses on the isolation and identification of bioactive compounds from P. bicarpellata extracts,… Click to show full abstract

Species of the genus Pleiocarpa are used in traditional medicine against fever and malaria. The present study focuses on the isolation and identification of bioactive compounds from P. bicarpellata extracts, and the evaluation of their antiprotozoal activity. Fractionation and isolation combined to LC-HRMS/MS-based dereplication provided 16 compounds: seven indole alkaloids, four indoline alkaloids, two secoiridoid glycosides, two iridoid glycosides, and one phenolic glucoside. One of the quaternary indole alkaloids (7) and one indoline alkaloid (15) have never been reported before. Their structures were elucidated by analysis of spectroscopic data, including 1D and 2D NMR experiments, UV, IR, and HRESIMS data. The absolute configurations were determined by comparison of the experimental and calculated ECD data. The extracts and isolated compounds were evaluated for their antiprotozoal activity towards Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani, and Plasmodium falciparum, as well as for their cytotoxicity against rat skeletal myoblast L6 cells. The dichloromethane/methanol (1:1) root extract showed strong activity against P. falciparum (IC50 value of 3.5 µg/mL). Among the compounds isolated, tubotaiwine (13) displayed the most significant antiplasmodial activity with an IC50 value of 8.5 µM and a selectivity index of 23.4. Therefore, P. bicarpallata extract can be considered as a source of indole alkaloids with antiplasmodial activity.

Keywords: indole alkaloids; antiprotozoal activity; activity; isolation structural

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.