LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In Silico Prediction of Cross-Reactive Epitopes of Tropomyosin from Shrimp and Other Arthropods Involved in Allergy

Photo from wikipedia

Tropomyosin in shellfish is considered a major cross-reactive allergen in house dust mites and cockroaches; however, the specific epitopes have not been elucidated. Therefore, this study aimed to identify the… Click to show full abstract

Tropomyosin in shellfish is considered a major cross-reactive allergen in house dust mites and cockroaches; however, the specific epitopes have not been elucidated. Therefore, this study aimed to identify the consensus antigenic determinant among shrimp, house dust mites, and cockroaches using in silico methods. The protein sequences of tropomyosin, including Der f 10, Mac r 1, Pen a 1, Pen m 1, Per a 7, and Bla g 7, were retrieved from the UniProt database. The 3D structures were derived from the AlphaFold or modeled using the Robetta. The determination of linear epitopes was performed by AlgPRED and BepiPRED for B cell epitope, and NetMHCIIpan and NetMHCII for T cell epitope, while Ellipro was used to evaluate conformational epitopes. Fourteen peptides were discovered as the consensus linear B cell epitopes, while seventeen peptides were identified as linear T cell epitopes specific to high-frequency HLA-DR and HLA-DQ alleles. The conformational determination of B cell epitopes provided nine peptides, in which residues 209, 212, 255–256, and 258–259 were found in both linear B cell and linear T cell epitope analysis. This data could be utilized for further in vitro study and may contribute to immunotherapy for allergic diseases associated with tropomyosin.

Keywords: cell; cross reactive; cell epitope; cell epitopes; linear cell

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.