LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanism of One-Step Hydrothermally Synthesized Titanate Catalysts for Ozonation

Photo from wikipedia

A titanate nanotube catalyst for ozonation was synthesized with a simple one-step NaOH hydrothermal treatment without energy-consuming calcination. The synthesized titania catalysts were characterized by X-ray diffraction (XRD), Raman, porosimetry… Click to show full abstract

A titanate nanotube catalyst for ozonation was synthesized with a simple one-step NaOH hydrothermal treatment without energy-consuming calcination. The synthesized titania catalysts were characterized by X-ray diffraction (XRD), Raman, porosimetry analysis, high-resolution transmission electron microscopy (HR-TEM), Fourier transformed infrared (FTIR), and electron paramagnetic resonance (EPR) analysis. The catalyst treated with a higher concentration of NaOH was found to be more catalytically active for phenol removal due to its higher titanate content that would facilitate more OH groups on its surface. Furthermore, the main active oxidizing species of the catalytic ozonation process were recognized as singlet oxygen and superoxide radical, while the hydroxyl radical may only play a minor role. This work provides further support for the correlation between the properties of titania and catalytic performance, which is significant for understanding the mechanism of catalytic ozonation with titania-based materials.

Keywords: one step; step hydrothermally; mechanism one; titanate; ozonation

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.