The treatment of complex diseases by using multiple drugs has become popular. However, drug-drug interactions (DDI) may give rise to the risk of unanticipated adverse effects and even unknown toxicity.… Click to show full abstract
The treatment of complex diseases by using multiple drugs has become popular. However, drug-drug interactions (DDI) may give rise to the risk of unanticipated adverse effects and even unknown toxicity. Therefore, for polypharmacy safety it is crucial to identify DDIs and explore their underlying mechanisms. The detection of DDI in the wet lab is expensive and time-consuming, due to the need for experimental research over a large volume of drug combinations. Although many computational methods have been developed to predict DDIs, most of these are incapable of predicting potential DDIs between drugs within the DDI network and new drugs from outside the DDI network. In addition, they are not designed to explore the underlying mechanisms of DDIs and lack interpretative capacity. Thus, here we propose a novel method of GNN-DDI to predict potential DDIs by constructing a five-layer graph attention network to identify k-hops low-dimensional feature representations for each drug from its chemical molecular graph, concatenating all identified features of each drug pair, and inputting them into a MLP predictor to obtain the final DDI prediction score. The experimental results demonstrate that our GNN-DDI is suitable for each of two DDI predicting scenarios, namely the potential DDIs among known drugs in the DDI network and those between drugs within the DDI network and new drugs from outside DDI network. The case study indicates that our method can explore the specific drug substructures that lead to the potential DDIs, which helps to improve interpretability and discover the underlying interaction mechanisms of drug pairs.
               
Click one of the above tabs to view related content.