With the ability to cross biological barriers, encapsulate and efficiently deliver drugs and nucleic acid therapeutics, and protect the loaded cargos from degradation, different soft polymer and lipid nanoparticles (including… Click to show full abstract
With the ability to cross biological barriers, encapsulate and efficiently deliver drugs and nucleic acid therapeutics, and protect the loaded cargos from degradation, different soft polymer and lipid nanoparticles (including liposomes, cubosomes, and hexosomes) have received considerable interest in the last three decades as versatile platforms for drug delivery applications and for the design of vaccines. Hard nanocrystals (including gold nanoparticles and quantum dots) are also attractive for use in various biomedical applications. Here, microfluidics provides unique opportunities for the continuous synthesis of these hard and soft nanomaterials with controllable shapes and sizes, and their in situ characterization through manipulation of the flow conditions and coupling to synchrotron small-angle X-ray (SAXS), wide-angle scattering (WAXS), or neutron (SANS) scattering techniques, respectively. Two-dimensional (2D) and three-dimensional (3D) microfluidic devices are attractive not only for the continuous production of monodispersed nanomaterials, but also for improving our understanding of the involved nucleation and growth mechanisms during the formation of hard nanocrystals under confined geometry conditions. They allow further gaining insight into the involved dynamic structural transitions, mechanisms, and kinetics during the generation of self-assembled nanostructures (including drug nanocarriers) at different reaction times (ranging from fractions of seconds to minutes). This review provides an overview of recently developed 2D and 3D microfluidic platforms for the continuous production of nanomaterials, and their simultaneous use in in situ characterization investigations through coupling to nanostructural characterization techniques (e.g., SAXS, WAXS, and SANS).
               
Click one of the above tabs to view related content.