LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inosine in Neurodegenerative Diseases: From the Bench to the Bedside

Photo by cems77 from unsplash

Neurodegenerative diseases, such as Alzheimer′s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), currently represent major unmet medical needs. Therefore, novel therapeutic strategies are needed… Click to show full abstract

Neurodegenerative diseases, such as Alzheimer′s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), currently represent major unmet medical needs. Therefore, novel therapeutic strategies are needed in order to improve patients’ quality of life and prognosis. Since oxidative stress can be strongly involved in neurodegenerative diseases, the potential use of inosine, known for its antioxidant properties, in this context deserves particular attention. The protective action of inosine treatment could be mediated by its metabolite urate. Here, we review the current preclinical and clinical studies investigating the use of inosine in AD, PD, ALS, and MS. The most important properties of inosine seem to be its antioxidant action and its ability to raise urate levels and to increase energetic resources by improving ATP availability. Inosine appears to be generally safe and well tolerated; however, the possible formation of kidney stones should be monitored, and data on its effectiveness should be further explored since, so far, they have been controversial. Overall, inosine could be a promising potential strategy in the management of neurodegenerative diseases, and additional studies are needed in order to further investigate its safety and efficacy and its use as a complementary therapy along with other approved drugs.

Keywords: inosine; bench bedside; inosine neurodegenerative; diseases bench; neurodegenerative diseases

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.