LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pt-Chitosan-TiO2 for Efficient Photocatalytic Hydrogen Evolution via Ligand-to-Metal Charge Transfer Mechanism under Visible Light

Photo by viazavier from unsplash

The Pt-chitosan-TiO2 charge transfer (CT) complex was synthesized via the sol-gel and impregnation method. The synthesized photocatalysts were thoroughly characterized, and their photocatalytic activity were evaluated toward H2 production through… Click to show full abstract

The Pt-chitosan-TiO2 charge transfer (CT) complex was synthesized via the sol-gel and impregnation method. The synthesized photocatalysts were thoroughly characterized, and their photocatalytic activity were evaluated toward H2 production through water reduction under visible-light irradiation. The effect of the preparation conditions of the photocatalysts (the degree of deacetylation of chitosan, addition amount of chitosan, and calcination temperature) on the photocatalytic activity was discussed. The optimal Pt-10%DD75-T200 showed a H2 generation rate of 280.4 μmol within 3 h. The remarkable visible-light photocatalytic activity of Pt-chitosan-TiO2 was due to the CT complex formation between chitosan and TiO2, which extended the visible-light absorption and induced the ligand-to-metal charge transfer (LMCT). The photocatalytic mechanism of Pt-chitosan-TiO2 was also investigated. This paper outlines a new and facile pathway for designing novel visible-light-driven photocatalysts that are based on TiO2 modified by polysaccharide biomass wastes that are widely found in nature.

Keywords: charge transfer; ligand metal; chitosan tio2; visible light

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.