The explanation of the anomeric effect in terms of underlying quantum properties is still controversial almost 70 years after its introduction. Here, we use a method called Relative Energy Gradient… Click to show full abstract
The explanation of the anomeric effect in terms of underlying quantum properties is still controversial almost 70 years after its introduction. Here, we use a method called Relative Energy Gradient (REG), which is able to compute chemical insight with a view to explaining the anomeric effect. REG operates on atomic energy contributions generated by the quantum topological energy decomposition Interacting Quantum Atoms (IQA). Based on the case studies of dimethoxymethane and 2-fluorotetrahydropyran, we show that the anomeric effect is electrostatic in nature rather than governed by hyperconjugation.
               
Click one of the above tabs to view related content.