LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reactive Adsorption Performance and Behavior of Gaseous Cumene on MCM-41 Supported Sulfuric Acid

Photo by kaedeee from unsplash

Efficient removal of cumene from gaseous streams and recovery of its derivatives was accomplished using a MCM-41-supported sulfuric acid (SSA/MCM-41) adsorbent. The results indicated that the removal performance of the… Click to show full abstract

Efficient removal of cumene from gaseous streams and recovery of its derivatives was accomplished using a MCM-41-supported sulfuric acid (SSA/MCM-41) adsorbent. The results indicated that the removal performance of the SSA/MCM-41 for cumene was significantly influenced by the process conditions such as bed temperature, inlet concentration, bed height, and flow rate. The dose–response model could perfectly describe the collected breakthrough adsorption data. The SSA/MCM-41 adsorbent exhibited a reactive temperature region of 120–170 °C, in which the cumene removal ratios (Xc) were greater than 97%. Rising the bed height or reducing the flow rate enhanced the theoretical adsorption performance metrics, such as theoretical breakthrough time (tB,th) and theoretical breakthrough adsorption capacity (QB,th), whereas increasing the inlet concentration resulted in tB,th shortening and QB,th rising. As demonstrated in this paper, the highest tB,th and QB,th were 69.60 min and 324.50 mg g−1, respectively. Meanwhile, the spent SSA/MCM-41 could be desorbed and regenerated for cyclic reuse. Moreover, two recoverable adsorbed products, 4-isopropylbenzenesulfonic acid and 4, 4′-sulfonyl bis(isopropyl-benzene), were successfully separated and identified using FTIR and 1H/13C NMR characterization. Accordingly, the relevance of a reactive adsorption mechanism was confirmed. This study suggests that the SSA/MCM-41 has remarkable potential for application as an adsorbent for the resource treatment of cumene pollutants.

Keywords: ssa mcm; adsorption; mcm supported; cumene; mcm; performance

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.