LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bauhinia forficata Link Infusions: Chemical and Bioactivity of Volatile and Non-Volatile Fractions

Photo by trhammerhead from unsplash

This study aimed to evaluate Bauhinia forficata infusions prepared using samples available in Rio de Janeiro, Brazil. As such, infusions at 5% (w/v) of different brands and batches commercialized in… Click to show full abstract

This study aimed to evaluate Bauhinia forficata infusions prepared using samples available in Rio de Janeiro, Brazil. As such, infusions at 5% (w/v) of different brands and batches commercialized in the city (CS1, CS2, CS3, and CS4) and samples of plant material botanically identified (BS) were evaluated to determine their total phenolic and flavonoid contents (TPC and TFC), antioxidant capacity (ABTS•+, DPPH•, and FRAP assays), phytochemical profile, volatile compounds, and inhibitory effects against the α-amylase enzyme. The results showed that infusions prepared using BS samples had lower TPC, TFC and antioxidant potential than the commercial samples (p < 0.05). The batch averages presented high standard deviations mainly for the commercial samples, corroborating sample heterogeneity. Sample volatile fractions were mainly composed of terpenes (40 compounds identified). In the non-volatile fraction, 20 compounds were identified, with emphasis on the CS3 sample, which comprised most of the compounds, mainly flavonoid derivatives. PCA analysis demonstrated more chemical diversity in non-volatile than volatile compounds. The samples also inhibited the α-amylase enzyme (IC50 value: 0.235–0.801 mg RE/mL). Despite the differences observed in this work, B. forficata is recognized as a source of bioactive compounds that can increase the intake of antioxidant compounds by the population.

Keywords: link infusions; forficata link; volatile fractions; bauhinia forficata; non volatile; infusions chemical

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.