Two water-soluble single-benzene-based chromophores, 2,5-di(azetidine-1-yl)-tereph- thalic acid (DAPA) and its disodium carboxylate (DAP-Na), were conveniently obtained. Both chromophores preserved moderate quantum yields in a wide range of polar and protonic… Click to show full abstract
Two water-soluble single-benzene-based chromophores, 2,5-di(azetidine-1-yl)-tereph- thalic acid (DAPA) and its disodium carboxylate (DAP-Na), were conveniently obtained. Both chromophores preserved moderate quantum yields in a wide range of polar and protonic solvents. Spectroscopic studies demonstrated that DAPA exhibited red luminescence as well as large Stokes shift (>200 nm) in aqueous solutions. Femtosecond transient absorption spectra illustrated quadrupolar DAPA usually involved the formation of an intramolecular charge transfer state. Its Frank–Condon state could be rapidly relaxed to a slight symmetry-breaking state upon light excitation following the solvent relaxation, then the slight charge separation may occur and the charge localization became partially asymmetrical in polar environments. Density functional theory (DFT) calculation results were supported well with the experimental measurements. Unique pH-dependent fluorescent properties endows the two chromophores with rapid, highly selective, and sensitive responses to the amino acids in aqueous media. In detail, DAPA served as a fluorescence turn-on probe with a detection limit (DL) of 0.50 μM for Arg and with that of 0.41 μM for Lys. In contrast, DAP-Na featured bright green luminescence and showed fluorescence turn-off responses to Asp and Glu with the DLs of 0.12 μM and 0.16 μM, respectively. Meanwhile, these two simple-structure probes exhibited strong anti-interference ability towards other natural amino acids and realized visual identification of specific analytes. The present work helps to understand the photophysic–structure relationship of these kinds of compounds and render their fluorescent detection applications.
               
Click one of the above tabs to view related content.