LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Confinement-Induced Fabrication of Liquid Crystalline Polymeric Fibers

Photo by charlesdeluvio from unsplash

In aqueous media, liquid crystalline droplets typically form spherical shapes in order to minimize surface energy. Recently, non-spherical geometry has been reported using molecular self-assembly of surfactant-stabilized liquid crystalline oligomers,… Click to show full abstract

In aqueous media, liquid crystalline droplets typically form spherical shapes in order to minimize surface energy. Recently, non-spherical geometry has been reported using molecular self-assembly of surfactant-stabilized liquid crystalline oligomers, resulting in branched and randomly oriented filamentous networks. In this study, we report a polymerization of liquid crystalline polymeric fibers within a micro-mold. When liquid crystal oligomers are polymerized in freely suspended aqueous media, curvilinear and randomly networked filaments are obtained. When reactive liquid crystalline monomers are oligomerized in a micro-channel, however, highly aligned linear fibers are polymerized. Within a top-down microfabricated mold, a bottom-up molecular assembly was successfully achieved in a controlled manner by micro-confinement, suggesting a unique opportunity for the programming architecture of materials via a hybrid approach.

Keywords: crystalline; polymeric fibers; confinement induced; liquid crystalline; crystalline polymeric

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.