Azo molecules, characterized by the presence of a -N=N- double bond, are widely used in various fields due to their sensitivity to external stimuli, ch as light. The emergence of… Click to show full abstract
Azo molecules, characterized by the presence of a -N=N- double bond, are widely used in various fields due to their sensitivity to external stimuli, ch as light. The emergence of bacterial resistance has pushed research towards designing new antimicrobial molecules that are more efficient than those currently in use. Many authors have attempted to exploit the antimicrobial activity of azobenzene and to utilize their photoisomerization for selective control of the bioactivities of antimicrobial molecules, which is necessary for antibacterial therapy. This review will provide a systematic and consequential approach to coupling azobenzene moiety with active antimicrobial molecules and drugs, including small and large organic molecules, such as peptides. A selection of significant cutting-edge articles collected in recent years has been discussed, based on the structural pattern and antimicrobial performance, focusing especially on the photoactivity of azobenzene and the design of smart materials as the most targeted and desirable application.
               
Click one of the above tabs to view related content.