LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrasound-Assisted One-Pot Cloud Point Extraction for Iron Determination Using Natural Chelating Ligands from Dipterocarpus intricatus Dyer Fruit

Photo from wikipedia

An ultrasound-assisted, one-pot cloud point extraction was developed for the determination of iron in vegetable samples by UV-Visible spectrophotometry. This method was based on the complexation of iron with an… Click to show full abstract

An ultrasound-assisted, one-pot cloud point extraction was developed for the determination of iron in vegetable samples by UV-Visible spectrophotometry. This method was based on the complexation of iron with an environmentally-friendly natural chelating agent extracted from Dipterocarpus intricatus Dyer fruit at pH 5.5 in the presence of Triton X-114. Reagent extraction, complexation, and preconcentration were performed simultaneously using ultrasound-assisted extraction at 45 °C. The surfactant-rich phase was diluted with ethanol and loaded through a syringe barrel packed with cotton that acted as a filter to trap the reagent powder. Analyte-entrapped on cotton was eluted using 0.1 mol·L−1 nitric acid solution. Filtrate and eluate solutions were measured absorbance of the dark-blue product at 575 nm. Influential parameters for the procedure were investigated. Under the optimum experimental conditions, the calibration curve was linear, ranging from 0.1 to 1.0 mg·L−1 with r2 = 0.997. Limits of detection and quantification were 0.03 and 0.09 mg·L−1, respectively while precision values of intra-day and inter-day were less than 5%. Recovery at 0.5 mg·L−1 ranged from 89.0 to 99.8%, while iron content in vegetable samples ranged from 2.45 to 13.36 mg/100 g. This method was cost-effective, reliable, eco-friendly, and convenient as a green analytical approach to determining iron content.

Keywords: iron; extraction; one pot; ultrasound assisted; assisted one; pot cloud

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.