LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Application of CO2 Supercritical Fluid to Optimize the Solubility of Oxaprozin: Development of Novel Machine Learning Predictive Models

Photo by markuswinkler from unsplash

Over the last years, extensive motivation has emerged towards the application of supercritical carbon dioxide (SCCO2) for particle engineering. SCCO2 has great potential for application as a green and eco-friendly… Click to show full abstract

Over the last years, extensive motivation has emerged towards the application of supercritical carbon dioxide (SCCO2) for particle engineering. SCCO2 has great potential for application as a green and eco-friendly technique to reach small crystalline particles with narrow particle size distribution. In this paper, an artificial intelligence (AI) method has been used as an efficient and versatile tool to predict and consequently optimize the solubility of oxaprozin in SCCO2 systems. Three learning methods, including multi-layer perceptron (MLP), Kriging or Gaussian process regression (GPR), and k-nearest neighbors (KNN) are selected to make models on the tiny dataset. The dataset includes 32 data points with two input parameters (temperature and pressure) and one output (solubility). The optimized models were tested with standard metrics. MLP, GPR, and KNN have error rates of 2.079 × 10−8, 2.173 × 10−9, and 1.372 × 10−8, respectively, using MSE metrics. Additionally, in terms of R-squared, they have scores of 0.868, 0.997, and 0.999, respectively. The optimal inputs are the same as the maximum possible values and are paired with a solubility of 1.26 × 10−3 as an output.

Keywords: application co2; solubility; optimize solubility; solubility oxaprozin

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.