LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Redox-Triggered Switching of Conformational State in Triple-Decker Lanthanide Phthalocyaninates

Double- and triple-decker lanthanide phthalocyaninates exhibit unique physical-chemical properties, particularly single-molecule magnetism. Among other factors, the magnetic properties of these sandwiches depend on their conformational state, which is determined via… Click to show full abstract

Double- and triple-decker lanthanide phthalocyaninates exhibit unique physical-chemical properties, particularly single-molecule magnetism. Among other factors, the magnetic properties of these sandwiches depend on their conformational state, which is determined via the skew angle of the phthalocyanine ligands. Thus, in the present work we report the comprehensive conformational study of substituted terbium(III) and yttrium(III) trisphthalocyaninates in solution depending on the substituents at the periphery of molecules, redox-states and nature of solvents. Conjunction of UV-vis-NIR spectroscopy and quantum-chemical calculations within simplified time-dependent DFT in Tamm–Dancoff approximation provided the spectroscopic signatures of staggered and gauche conformations of trisphthalocyaninates. Altogether, it allowed us to demonstrate that the butoxy-substituted complex behaves as a molecular switcher with controllable conformational state, while the crown-substituted triple-decker complex maintains a staggered conformation regardless of external factors. The analysis of noncovalent interactions within the reduced density gradient approach allowed to shed light on the nature of factors stabilizing certain conformers.

Keywords: conformational state; triple decker; lanthanide phthalocyaninates; decker lanthanide

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.