LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microstructure, Mechanical and Electrical Properties of Hybrid Copper Matrix Composites with Fe Microspheres and rGO Nanosheets

Photo from wikipedia

Copper matrix composites have a wide application as magnetic conductive materials, electromagnetic materials, electrical discharge machining materials, etc. Such materials are expected to have a good combination of excellent electrical… Click to show full abstract

Copper matrix composites have a wide application as magnetic conductive materials, electromagnetic materials, electrical discharge machining materials, etc. Such materials are expected to have a good combination of excellent electrical conductivity and good mechanical strength. In this work, micro/nano hybrid reinforcements with Fe microspheres and reduced graphene oxide (rGO) nanosheets were developed for copper matrix composites. The rGO/Fe/Cu powders were firstly wet-mixed and then densified by the vacuum hot-pressing sintering to obtain the bulk compacts. Microstructure, electrical conductivity and mechanical properties of such compacts were investigated. Microstructural result of as-sintered compacts shows that the Fe microspheres could distribute in the matrix uniformly, and rGO nanosheets exhibit both agglomerated and dispersed states. The grain size of Cu matrix decreased with the increase of the rGO content. Hardness, compression and tensile 0.2% yield strength of the as-sintered compacts were improved evidently by the addition of the hybrid Fe/rGO, comparing with pure Cu and single Fe-added composites. However, a lower electrical conductivity appeared in the more rGO-added composites, but still reached more than 33.0% international annealing copper standard (IACS). These performance change could be sought in the spatially geometrical distribution and characteristics of such micro/nano Fe/rGO hybrid addition, and the relevant mechanisms were discussed.

Keywords: matrix; copper; copper matrix; matrix composites; rgo nanosheets

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.