LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient Synthesis of 4,8-Dibromo Derivative of Strong Electron-Deficient Benzo[1,2-d:4,5-d’]bis([1,2,3]thiadiazole) and Its SNAr and Cross-Coupling Reactions

Photo by sickhews from unsplash

An efficient synthesis of hydrolytically and thermally stable 4,8-dibromobenzo[1,2-d:4,5-d’]bis([1,2,3]thiadiazole) by the bromination of its parent heterocycle is reported. The structure of 4,8-dibromobenzo[1,2-d:4,5-d’]bis([1,2,3]thiadiazole) was confirmed by X-ray analysis. The conditions for… Click to show full abstract

An efficient synthesis of hydrolytically and thermally stable 4,8-dibromobenzo[1,2-d:4,5-d’]bis([1,2,3]thiadiazole) by the bromination of its parent heterocycle is reported. The structure of 4,8-dibromobenzo[1,2-d:4,5-d’]bis([1,2,3]thiadiazole) was confirmed by X-ray analysis. The conditions for the selective aromatic nucleophilic substitution of one bromine atom in this heterocyclic system by nitrogen nucleophiles are found, whereas thiols formed the bis-derivatives only. Suzuki–Miyaura cross-coupling reactions were found to be an effective method for the selective formation of various mono- and di(het)arylated derivatives of strong electron-deficient benzo[1,2-d:4,5-d’]bis([1,2,3]thiadiazole), and Stille coupling can be employed for the preparation of bis-arylated heterocycles, which can be considered as useful building blocks for the synthesis of DSSCs and OLEDs components.

Keywords: bis thiadiazole; bis; efficient synthesis; cross coupling

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.