LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Insights into the Inhibitory Mechanism of Viniferifuran on Xanthine Oxidase by Multiple Spectroscopic Techniques and Molecular Docking

Photo by victor_g from unsplash

Viniferifuran was investigated for its potential to inhibit the activity of xanthine oxidase (XO), a key enzyme catalyzing xanthine to uric acid. An enzyme kinetics analysis showed that viniferifuran possessed… Click to show full abstract

Viniferifuran was investigated for its potential to inhibit the activity of xanthine oxidase (XO), a key enzyme catalyzing xanthine to uric acid. An enzyme kinetics analysis showed that viniferifuran possessed a strong inhibition on XO in a typical anti-competitive manner with an IC50 value of 12.32 μM (IC50 for the first-line clinical drug allopurinol: 29.72 μM). FT-IR and CD data analyses showed that viniferifuran could induce a conformational change of XO with a decrease in the α-helix and increases in the β-sheet, β-turn, and random coil structures. A molecular docking analysis revealed that viniferifuran bound to the amino acid residues located within the activity cavity of XO by a strong hydrophobic interaction (for Ser1214, Val1011, Phe914, Phe1009, Leu1014, and Phe649) and hydrogen bonding (for Asn768, Ser876, and Tyr735). These findings suggested that viniferifuran might be a promising XO inhibitor with a favorable mechanism of action.

Keywords: molecular docking; viniferifuran; xanthine; xanthine oxidase; mechanism

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.