LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Regulation of the Gut Microbiota and Inflammation by β-Caryophyllene Extracted from Cloves in a Dextran Sulfate Sodium-Induced Colitis Mouse Model

Photo by kellysikkema from unsplash

Ulcerative colitis is an inflammatory bowel disease characterized by symptoms such as abdominal pain, diarrhea, bleeding, and weight loss. Ulcerative colitis is typically treated with anti-inflammatory drugs; however, these drugs… Click to show full abstract

Ulcerative colitis is an inflammatory bowel disease characterized by symptoms such as abdominal pain, diarrhea, bleeding, and weight loss. Ulcerative colitis is typically treated with anti-inflammatory drugs; however, these drugs are associated with various side effects, limiting their use. β-Caryophyllene (BCP), a natural compound derived from cloves, has antioxidant, antibacterial, and anti-inflammatory activities. In this study, we aimed to investigate the effects of BCP on colitis in a dextran sulfate sodium (DSS)-induced colitis mouse model. BCP was administered for seven days, followed by 2.5% DSS for additional seven days to induce colitis. Changes in stool weight, recovery of gut motility, colon length, colon histology, myeloperoxidase activity, inflammatory cytokines (TNF-α, IL-1β, IL-6, IgA, and IgG), and the gut microbiota were observed. Administration of BCP increased stool weight, restored gut motility, and considerably increased colon length compared to those in the untreated colitis mouse model. In addition, the amount of mucin and myeloperoxidase activity in the colon increased, whereas the concentrations of IL-1β, IL-6, and TNF-α decreased following the administration of BCP. Furthermore, BCP reduced the abundance of Proteobacteria which can cause intestinal immune imbalance. These results suggest that BCP has a potential to be developed as a preventive agent for colitis.

Keywords: colitis; dextran sulfate; colitis mouse; mouse model

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.