LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fluorine-Containing Flow Modifier for BN/PPS Composites Enabled by Low Surface Energy

Photo by mbrunacr from unsplash

In this study, a fluorine-containing flow modifier (Si-DF) with low surface energy is successfully synthesized, which is applied to fabricate ideal electronic packaging materials (BN/PPS composites) with high thermal conductivity,… Click to show full abstract

In this study, a fluorine-containing flow modifier (Si-DF) with low surface energy is successfully synthesized, which is applied to fabricate ideal electronic packaging materials (BN/PPS composites) with high thermal conductivity, excellent dielectric properties, processability, and toughness by conventional melt blending. Si-DPF is located at the interface between the BN fillers and the PPS matrix, which not only improves the dispersion of BN fillers but also strengthens the interaction. With the help of 5 wt% Si-DF, BN/PPS/Si-DF (70/25/5) still exhibits the high thermally conductive coefficient (3.985 W/m·K) and low dielectric constant (3.76 at 100 MHz) although BN fillers are loaded as high as 70 wt%. Moreover, the sample processes a lower stable torque value (2.5 N·m), and the area under the stress–strain curves is also increased. This work provides an efficient way to develop high-performance polymer-based composites with high thermally conductive coefficients and low dielectric constants for electronic packaging applications.

Keywords: surface energy; flow modifier; pps composites; fluorine containing; containing flow; low surface

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.