LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nucleophilic Substitution at Tricoordinate Sulfur—Alkaline Hydrolysis of Optically Active Dialkoxysulfonium Salts: Stereochemistry, Mechanism and Reaction Energetics

Photo from wikipedia

Optically active dialkoxyisopropylsulfonium salts were obtained by methylation (ethylation) of optically active alkyl isopropanesulfinates using methyl (ethyl) trifluoromethanesulfonate. Alkaline hydrolysis of a series of methoxy(alkoxy)sulfonium salts afforded the two sulfinate… Click to show full abstract

Optically active dialkoxyisopropylsulfonium salts were obtained by methylation (ethylation) of optically active alkyl isopropanesulfinates using methyl (ethyl) trifluoromethanesulfonate. Alkaline hydrolysis of a series of methoxy(alkoxy)sulfonium salts afforded the two sulfinate products methyl isopropanesulfinate and alkyl isopropanesulfinate, both formed with a slightly prevailing inversion of configuration at the sulfur atom. DFT calculations revealed that this substitution reaction proceeded stepwise according to an addition-elimination (A–E) mechanism involving the formation of high tetracoordinate SIV sulfurane intermediates. In addition, the DFT calculations showed that recombination of the hydroxy anion with the methoxy(alkoxy)sulfonium cation—leading to the parallel formation of the two most stable primary sulfuranes, with the hydroxy and alkoxy groups in apical positions and their direct decomposition—is the most energetically favorable pathway.

Keywords: substitution; optically active; alkaline hydrolysis; sulfur; stereochemistry

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.