LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enantioselective Recognition of Lysine and Phenylalanine Using an Imidazole Salt-Type Fluorescent Probe Based on H8-BINOL

Photo from wikipedia

An imidazole bromide fluorescent probe (R)-1 based on chiral H8-BINOL was synthesized with a high yield; it was found to have good enantioselective recognition of lysine and phenylalanine using fluorescence… Click to show full abstract

An imidazole bromide fluorescent probe (R)-1 based on chiral H8-BINOL was synthesized with a high yield; it was found to have good enantioselective recognition of lysine and phenylalanine using fluorescence analysis. When L-lysine was recognized, the enantioselective fluorescence enhancement ratio was 2.7 (ef = IL − I0/ID − I0, ef = 2.7, 20 eq Lys); as the amount of L-Lys increased, a distinct red shift was observed (the wavelength varied by 55.6 nm, 0–100 eq L-Lys), whereas D-Lys had a minimal red shift. The generation of this red shift phenomenon was probably due to the ICT effect; the probe’s intramolecular charge transfer was affected after (R)-1 bound to L-Lys, and this charge transfer was enhanced, leading to a red shift in fluorescence. In addition to the enantioselective recognition of lysine, phenylalanine was also recognized; the enantioselective fluorescence enhancement ratio was 5.1 (ef = IL − I0/ID − I0, ef = 5.1, 20 eq Phe).

Keywords: lysine phenylalanine; enantioselective recognition; lysine; recognition lysine; probe

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.