LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hedgehog, Chamomile, and Multipetal Polymeric Structures on the Nanoparticle Surface: Computer Modelling

Photo by soheil_rb from unsplash

A single spherical nanoparticle coated with a densely grafted layer of an amphiphilic homopolymer with identical A-graft-B monomer units was studied by means of coarse-grained molecular dynamics. In solvent, selectively… Click to show full abstract

A single spherical nanoparticle coated with a densely grafted layer of an amphiphilic homopolymer with identical A-graft-B monomer units was studied by means of coarse-grained molecular dynamics. In solvent, selectively poor for mainchain and good for pendant groups; the grafted macromolecules self-assemble into different structures to form a complex pattern on the nanoparticle surface. We distinguish hedgehog, multipetalar, chamomile, and densely structured shells and outline the area of their stability using visual analysis and calculate aggregation numbers and specially introduced order parameters, including the branching coefficient and relative orientation of monomer units. For the first time, the branching effect of splitting aggregates along with the distance to the grafting surface and preferred orientation of the monomer units with rearrangements of the dense compacted shell was described. The results explain the experimental data, are consistent with the analytical theory, and are the basis for the design of stimulus-sensitive matrix-free composite materials.

Keywords: multipetal polymeric; nanoparticle surface; polymeric structures; monomer units; hedgehog chamomile; chamomile multipetal

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.