LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Photocatalytic Aerobic Oxidation of Biomass-Derived 5-HMF to DFF over MIL-53(Fe)/g-C3N4 Composite

Photo by miracleday from unsplash

A MIL-53(Fe)/g-C3N4 heterogeneous composite was synthesized and applied in photocatalytic oxidation of 5-hydroxymethylfurfural (5-HMF) to 2,5-diformylfuran (DFF). The systematic investigation indicated that the introduction of MIL-53(Fe) into g-C3N4 increased the… Click to show full abstract

A MIL-53(Fe)/g-C3N4 heterogeneous composite was synthesized and applied in photocatalytic oxidation of 5-hydroxymethylfurfural (5-HMF) to 2,5-diformylfuran (DFF). The systematic investigation indicated that the introduction of MIL-53(Fe) into g-C3N4 increased the specific surface area, broadened the visible-light response region, and promoted the separation efficiency of the photo-generated electron-hole pairs. The 10% MIL-53(Fe)/g-C3N4 heterogeneous composite achieved the best photocatalytic oxidation activity with 74.5% of 5-HMF conversion under simulated sunlight, which was much higher than that of pristine g-C3N4 and MIL-53(Fe). The MIL-53(Fe)/g-C3N4 composite displayed good photocatalytic reusability and stability. Based on the characterization results and photocatalytic performance, a Z-scheme photocatalytic mechanism of the MIL-53(Fe)/g-C3N4 composite was suggested, and a possible reaction route was deduced.

Keywords: oxidation; c3n4 composite; mil c3n4; mil; dff

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.