LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

α-Diimine Cisplatin Derivatives: Synthesis, Structure, Cyclic Voltammetry and Cytotoxicity

Photo by mybbor from unsplash

Three new Pt(II) complexes [(dpp-DAD)PtCl2] (I), [(Mes-DAD(Me)2)PtCl2] (II) and [(dpp-DAD(Me)2)PtCl2] (III) were synthesized by the direct reaction of [(CH3CN)2PtCl2] and corresponding redox-active 1,4-diaza-1,3-butadienes (DAD). The compounds were isolated in a… Click to show full abstract

Three new Pt(II) complexes [(dpp-DAD)PtCl2] (I), [(Mes-DAD(Me)2)PtCl2] (II) and [(dpp-DAD(Me)2)PtCl2] (III) were synthesized by the direct reaction of [(CH3CN)2PtCl2] and corresponding redox-active 1,4-diaza-1,3-butadienes (DAD). The compounds were isolated in a single crystal form and their molecular structures were determined by X-ray diffraction. The purity of the complexes and their stability in solution was confirmed by NMR analysis. The Pt(II) ions in all compounds are in a square planar environment. The electrochemical reduction of complexes I–III proceeds in two successive cathodic stages. The first quasi-reversible reduction leads to the relatively stable monoanionic complexes; the second cathodic stage is irreversible. The coordination of 1,4-diaza-1,3-butadienes ligands with PtCl2 increases the reduction potential and the electron acceptor ability of the DAD ligands. The synthesized compounds were tested in relation to an adenocarcinoma of the ovary (SKOV3).

Keywords: diimine cisplatin; derivatives synthesis; synthesis structure; cisplatin derivatives; structure cyclic; dad ptcl2

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.