LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep-Blue Triplet–Triplet Annihilation Organic Light-Emitting Diode (CIEy ≈ 0.05) Using Tetraphenylimidazole and Benzonitrile Functionalized Anthracene/Chrysene Emitters

Photo from wikipedia

Herein, new deep-blue triplet-triplet annihilation (TTA) molecules, namely 4-(10-(4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenyl)anthracen-9-yl)benzonitrile (TPIAnCN) and 4-(12-(4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenyl)chrysen-6-yl)benzonitrile (TPIChCN), are designed, synthesized, and investigated as emitters for organic light-emitting diodes (OLED). TPIAnCN and TPIChCN are composed… Click to show full abstract

Herein, new deep-blue triplet-triplet annihilation (TTA) molecules, namely 4-(10-(4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenyl)anthracen-9-yl)benzonitrile (TPIAnCN) and 4-(12-(4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenyl)chrysen-6-yl)benzonitrile (TPIChCN), are designed, synthesized, and investigated as emitters for organic light-emitting diodes (OLED). TPIAnCN and TPIChCN are composed of polyaromatic hydrocarbons of anthracene (An) and chrysene (Ch) as the cores functionalized with tetraphenylimidazole (TPI) and benzonitrile (CN) moieties, respectively. The experimental and theoretical results verify their excellent thermal properties, photophysical properties, as well as electrochemical properties. Particularly, their emissions are in the deep blue region, with TTA emissions being observed in their thin films. By utilization of these molecules as emitters, deep blue TTA OLEDs with CIE coordinates of (0.15, 0.05), high external quantum efficiency of 6.84%, and high exciton utilization efficiency (ηs) of 48% were fabricated. This result manifests the potential use of chrysene as an alternate building block to formulate new TTA molecules for accomplishing high-performance TTA OLEDs.

Keywords: deep blue; tta; blue triplet; triplet annihilation; triplet; triplet triplet

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.