LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cerium-Doped Iron Oxide Nanorod Arrays for Photoelectrochemical Water Splitting

Photo from wikipedia

In this work, a simple one-step hydrothermal method was employed to prepare the Ce-doped Fe2O3 ordered nanorod arrays (CFT). The Ce doping successfully narrowed the band gap of Fe2O3, which… Click to show full abstract

In this work, a simple one-step hydrothermal method was employed to prepare the Ce-doped Fe2O3 ordered nanorod arrays (CFT). The Ce doping successfully narrowed the band gap of Fe2O3, which improved the visible light absorption performance. In addition, with the help of Ce doping, the recombination of electron/hole pairs was significantly inhibited. The external voltage will make the performance of the Ce-doped sample better. Therefore, the Ce-doped Fe2O3 has reached superior photoelectrochemical (PEC) performance with a high photocurrent density of 1.47 mA/cm2 at 1.6 V vs. RHE (Reversible Hydrogen Electrode), which is 7.3 times higher than that of pristine Fe2O3 nanorod arrays (FT). The Hydrogen (H2) production from PEC water splitting of Fe2O3 was highly improved by Ce doping to achieve an evolution rate of 21 μmol/cm2/h.

Keywords: doped iron; cerium doped; nanorod arrays; water splitting

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.