LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design, Catalyst-Free Synthesis of New Novel α-Trifluoromethylated Tertiary Alcohols Bearing Coumarins as Potential Antifungal Agents

A new method for the synthesis of α-trifluoromethylated tertiary alcohols bearing coumarins is described. The reaction of 3-(trifluoroacetyl)coumarin and pyrrole provided the target compounds with high yields under catalyst-free, mild… Click to show full abstract

A new method for the synthesis of α-trifluoromethylated tertiary alcohols bearing coumarins is described. The reaction of 3-(trifluoroacetyl)coumarin and pyrrole provided the target compounds with high yields under catalyst-free, mild conditions. The crystal structure of compound 3fa was investigated by X-ray diffraction analysis. The biological activities, such as in vitro antifungal activity of the α-trifluoromethylated tertiary alcohols against Fusarium graminearum, Fusarium oxysporum, Fusarium moniliforme, Rhizoctonia solani Kuhn, and Phytophthora parasitica var nicotianae, were investigated. The bioassay results indicated that compounds 3ad, 3gd, and 3hd showed broad-spectrum antifungal activity in vitro. Compound 3cd exhibited excellent fungicidal activity against Rhizoctonia solani Kuhn, with an EC50 value of 10.9 μg/mL, which was comparable to that of commercial fungicidal triadimefon (EC50 = 6.1 μg/mL). Furthermore, molecular docking study suggested that 3cd had high binding affinities with 1W9U, like argifin.

Keywords: trifluoromethylated tertiary; catalyst free; bearing coumarins; alcohols bearing; synthesis; tertiary alcohols

Journal Title: Molecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.