LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

One-Pot Hydrothermal Preparation of Hydroxyapatite/Zinc Oxide Nanorod Nanocomposites and Their Cytotoxicity Evaluation against MG-63 Osteoblast-like Cells

Photo by efekurnaz from unsplash

In the present study, HAp-ZnO nanorod nanocomposites were successfully prepared using a customized hydrothermal reactor and studied for their compatibility against MG-63 osteoblast-like cells. The crystallinity, morphology, presence of chemical… Click to show full abstract

In the present study, HAp-ZnO nanorod nanocomposites were successfully prepared using a customized hydrothermal reactor and studied for their compatibility against MG-63 osteoblast-like cells. The crystallinity, morphology, presence of chemical elements, and surface area properties were studied by XRD (X-ray diffraction), FE-SEM (field emission scanning electron microscopy), TEM (transmission electron microscopy), EDS (energy dispersive spectrum) and N2 adsorption/desorption isotherm techniques, respectively. Further, the mechanical strength and thermal analysis were carried out using the nanoindentation method and thermogravimetric/differential scanning calorimeter (TG/DSC) methods, respectively. Moreover, in vitro biocompatibility studies for the prepared samples were carried out against human osteosarcoma cell lines (MG-63). The crystalline nature of the samples without any impurity phases was notified from XRD results. The formation of composites with the morphology of nanorods and the presence of desired elements in the intended ratio were verified using FE-SEM and EDS spectra, respectively. The TG/DSC results revealed the improved thermal stability of the HAp matrix, promoted by the reinforcement of the ZnO nanorods. The nanoindentation study ensured a significant enhancement in the mechanical stability of the prepared composite material. Finally, it demonstrated that the HAp matrix’s mechanical strength and thermal stability were improved by the reinforcement of ZnO, and the cytotoxicity evaluation affirmed the biocompatible nature of the biomimetic hydroxyapatite in the composite.

Keywords: osteoblast like; microscopy; nanorod nanocomposites; cytotoxicity evaluation; like cells

Journal Title: Molecules
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.