LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design, Synthesis, Docking Study, and Antiproliferative Evaluation of Novel Schiff Base–Benzimidazole Hybrids with VEGFR-2 Inhibitory Activity

Photo from wikipedia

A new series of Schiff–benzimidazole hybrids 3a–o has been designed and synthesized. The structure of the target compounds was proved by different spectroscopic and elemental analysis tools. The target compounds… Click to show full abstract

A new series of Schiff–benzimidazole hybrids 3a–o has been designed and synthesized. The structure of the target compounds was proved by different spectroscopic and elemental analysis tools. The target compounds were evaluated for their in vitro cytotoxic activity against 60 cancer cell lines according to NCI single- and five-dose protocols. Consequently, four compounds were further examined against the most sensitive lung cancer A549 and NCI-H460 cell lines. Compounds 3e and 3g were the most active, achieving 3.58 ± 0.53, 1.71 ± 0.17 and 1.88 ± 0.35, 0.85 ± 0.24 against A549 and NCI-H460 cell lines, respectively. Moreover, they showed remarkable inhibitory activity on the VEGFR-2 TK with 86.23 and 89.89%, respectively, as compared with Sorafenib (88.17%). Moreover, cell cycle analysis of NCI-H460 cells treated with 3e and 3g showed cellular cycle arrest at both G1 and S phases (supported by caspases-9 study) with significant pro-apoptotic activity, as indicated by annexin V-FITC staining. The binding interactions of these compounds were confirmed through molecular docking studies; the most active compounds displayed complete overlay with, and a similar binding mode and pose to, Sorafenib, a reference VEGFR-2 inhibitor.

Keywords: nci h460; inhibitory activity; activity; benzimidazole hybrids; cell lines

Journal Title: Molecules
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.