LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrochemical and Spectroscopic (FTIR) Evidence of Conducting Polymer-Cu Ions Interaction

Photo by austriannationallibrary from unsplash

In this work, we provide electrochemical and spectroscopic evidence of the conducting polymer-heavy metal ion interaction by comparing the electrochemical and spectroscopic behavior (FTIR) of two different conducting polymer-modified electrodes… Click to show full abstract

In this work, we provide electrochemical and spectroscopic evidence of the conducting polymer-heavy metal ion interaction by comparing the electrochemical and spectroscopic behavior (FTIR) of two different conducting polymer-modified electrodes based on 3,4-alkoxythiophenes: 3,4-ethylenedioxythiophene (EDOT) and ortho-xylen-3,4-dioxythiophene (XDOT) during the potentiodynamic stripping of copper. By analyzing the electrochemical and spectroscopic results, it is possible to propose two different copper dissolution processes during the electrochemical stripping process, which depend on the conducting polymer used. With PEDOT matrix, stripping occurs in a two-step pathway, observed as two anodic peaks, involving the formation of the Cu+-PEDOT complex and the subsequent oxidation step of the Cu+ complex to release Cu2+ ions. On the other side, the experiments carried out let us propose the formation of a poorly stable Cu2+-PXDOT complex or a superficial mechanism for the Cu2+ release, characterized by a single stripping signal for this process. Thus, the incorporation of Cu ions into the matrix and the stripping release are intimately related to the chemical structure of the polymer used.

Keywords: conducting polymer; evidence conducting; spectroscopic ftir; electrochemical spectroscopic

Journal Title: Molecules
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.