Acacia saligna growing in Australia has not been fully investigated for its bioactive phytochemicals. Sequential polarity-based extraction was employed to provide four different extracts from individual parts of A. saligna.… Click to show full abstract
Acacia saligna growing in Australia has not been fully investigated for its bioactive phytochemicals. Sequential polarity-based extraction was employed to provide four different extracts from individual parts of A. saligna. Bioactive extracts were determined using in vitro antioxidant and yeast α-glucosidase inhibitory assays. Methanolic extracts from barks, leaves, and flowers are the most active and have no toxicity against 3T3-L1 adipocytes. Compound isolation of bioactive extracts provided us with ten compounds. Among them are two novel natural products; naringenin-7-O-α-L-arabinopyranoside 2 and (3S*,5S*)-3-hydroxy-5-(2-aminoethyl) dihydrofuran-2(3H)-one 9. D-(+)-pinitol 5a (from barks and flowers), (−)-pinitol 5b (exclusively from leaf), and 2,4-di-t-butylphenol 7 are known natural products and new to A. saligna. (−)-Epicatechin 6, quercitrin 4, and myricitrin 8 showed potent antioxidant activities consistently in DPPH and ABTS assays. (−)-Epicatechin 6 (IC50 = 63.58 μM), D-(+)-pinitol 5a (IC50 = 74.69 μM), and naringenin 1 (IC50 = 89.71 μM) are the strong inhibitors against the α-glucosidase enzyme. The presence of these compounds supports the activities exerted in our methanolic extracts. The presence of 2,4-di-t-butylphenol 7 may support the reported allelopathic and antifungal activities. The outcome of this study indicates the potential of Australian A. saligna as a rich source of bioactive compounds for drug discovery targeting type 2 diabetes.
               
Click one of the above tabs to view related content.