LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unveiling the Efficacy of Sesquiterpenes from Marine Sponge Dactylospongia elegans in Inhibiting Dihydrofolate Reductase Using Docking and Molecular Dynamic Studies

Photo by ldxcreative from unsplash

Dihydrofolate reductase (DHFR) is a crucial enzyme that maintains the levels of 5,6,7,8-tetrahydrofolate (THF) required for the biological synthesis of the building blocks of DNA, RNA, and proteins. Over-activation of… Click to show full abstract

Dihydrofolate reductase (DHFR) is a crucial enzyme that maintains the levels of 5,6,7,8-tetrahydrofolate (THF) required for the biological synthesis of the building blocks of DNA, RNA, and proteins. Over-activation of DHFR results in the progression of multiple pathological conditions such as cancer, bacterial infection, and inflammation. Therefore, DHFR inhibition plays a major role in treating these illnesses. Sesquiterpenes of various types are prime metabolites derived from the marine sponge Dactylospongia elegans and have demonstrated antitumor, anti-inflammation, and antibacterial capacities. Here, we investigated the in silico potential inhibitory effects of 87 D. elegans metabolites on DHFR and predicted their ADMET properties. Compounds were prepared computationally for molecular docking into the selected crystal structure of DHFR (PDB: 1KMV). The docking scores of metabolites 34, 28, and 44 were the highest among this series (gscore values of −12.431, −11.502, and −10.62 kcal/mol, respectively), even above the co-crystallized inhibitor SRI-9662 score (−10.432 kcal/mol). The binding affinity and protein stability of these top three scored compounds were further estimated using molecular dynamic simulation. Compounds 34, 28, and 44 revealed high binding affinity to the enzyme and could be possible leads for DHFR inhibitors; however, further in vitro and in vivo investigations are required to validate their potential.

Keywords: sponge dactylospongia; dactylospongia elegans; molecular dynamic; marine sponge; dihydrofolate reductase

Journal Title: Molecules
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.