LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel 2-Thiouracil-5-Sulfonamide Derivatives: Design, Synthesis, Molecular Docking, and Biological Evaluation as Antioxidants with 15-LOX Inhibition

Photo from wikipedia

New antioxidant agents are urgently required to combat oxidative stress, which is linked to the emergence of serious diseases. In an effort to discover potent antioxidant agents, a novel series… Click to show full abstract

New antioxidant agents are urgently required to combat oxidative stress, which is linked to the emergence of serious diseases. In an effort to discover potent antioxidant agents, a novel series of 2-thiouracil-5-sulfonamides (4–9) were designed and synthesized. In line with this approach, our target new compounds were prepared from methyl ketone derivative 3, which was used as a blocking unit for further synthesis of a novel series of chalcone derivatives 4a–d, thiosemicarbazone derivatives 5a–d, pyridine derivatives 6a–d and 7a–d, bromo acetyl derivative 8, and thiazole derivatives 9a–d. All compounds were evaluated as antioxidants against 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide (H2O2), lipid peroxidation, and 15-lipoxygenase (15-LOX) inhibition activity. Compounds 5c, 6d, 7d, 9b, 9c, and 9d demonstrated significant RSA in all three techniques in comparison with ascorbic acid and 15-LOX inhibitory effectiveness using quercetin as a standard. Molecular docking of compound 9b endorsed its proper binding at the active site pocket of the human 15-LOX which explains its potent antioxidant activity in comparison with standard ascorbic acid.

Keywords: molecular docking; synthesis; lox inhibition; thiouracil sulfonamide; novel thiouracil

Journal Title: Molecules
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.