LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis and Biological Evaluation of 3-Amino-4,4-Dimethyl Lithocholic Acid Derivatives as Novel, Selective, and Cellularly Active Allosteric SHP1 Activators

Photo from wikipedia

Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1), a non-receptor member of the protein tyrosine phosphatase (PTP) family, negatively regulates several signaling pathways that are responsible for pathological cell… Click to show full abstract

Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1), a non-receptor member of the protein tyrosine phosphatase (PTP) family, negatively regulates several signaling pathways that are responsible for pathological cell processes in cancers. In this study, we report a series of 3-amino-4,4-dimethyl lithocholic acid derivatives as SHP1 activators. The most potent compounds, 5az-ba, showed low micromolar activating effects (EC50: 1.54–2.10 μM) for SHP1, with 7.63–8.79-fold maximum activation and significant selectivity over the closest homologue Src homology 2 domain-containing protein tyrosine phosphatase 2 (SHP2) (>32-fold). 5az-ba showed potent anti-tumor effects with IC50 values of 1.65–5.51 μM against leukemia and lung cancer cells. A new allosteric mechanism of SHP1 activation, whereby small molecules bind to a central allosteric pocket and stabilize the active conformation of SHP1, was proposed. The activation mechanism was consistent with the structure–activity relationship (SAR) data. This study demonstrates that 3-amino-4,4-dimethyl lithocholic acid derivatives can be selective SHP1 activators with potent cellular efficacy.

Keywords: shp1 activators; dimethyl lithocholic; amino dimethyl; lithocholic acid; acid derivatives; shp1

Journal Title: Molecules
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.