LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pyrrole-2-carboxaldehydes: Origins and Physiological Activities

Photo by itfeelslikefilm from unsplash

Pyrrole-2-carboxaldehyde (Py-2-C) derivatives have been isolated from many natural sources, including fungi, plants (roots, leaves, and seeds), and microorganisms. The well-known diabetes molecular marker, pyrraline, which is produced after sequential… Click to show full abstract

Pyrrole-2-carboxaldehyde (Py-2-C) derivatives have been isolated from many natural sources, including fungi, plants (roots, leaves, and seeds), and microorganisms. The well-known diabetes molecular marker, pyrraline, which is produced after sequential reactions in vivo, has a Py-2-C skeleton. Py-2-Cs can be chemically produced by the strong acid-catalyzed condensation of glucose and amino acid derivatives in vitro. These observations indicate the importance of the Py-2-C skeleton in vivo and suggest that molecules containing this skeleton have various biological functions. In this review, we have summarized Py-2-C derivatives based on their origins. We also discuss the structural characteristics, natural sources, and physiological activities of isolated compounds containing the Py-2-C group.

Keywords: pyrrole carboxaldehydes; origins physiological; skeleton; physiological activities; carboxaldehydes origins

Journal Title: Molecules
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.