LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recent Progress in Heterocycle Synthesis: Cyclization Reaction with Pyridinium and Quinolinium 1,4-Zwitterions

Photo by ryanhoffman007 from unsplash

Heteroarene 1, n-zwitterions are powerful and versatile building blocks in the construction of heterocycles and have received increasing attention in recent years. In particular, pyridinium and quinolinium 1,4-zwitterions have been… Click to show full abstract

Heteroarene 1, n-zwitterions are powerful and versatile building blocks in the construction of heterocycles and have received increasing attention in recent years. In particular, pyridinium and quinolinium 1,4-zwitterions have been widely studied and used in a variety of cyclization reactions due to their air stability, ease of use, and high efficiency. Sulfur- and nitrogen-based pyridinium and quinolinium 1,4-zwitterions, types of emerging heteroatom-containing synthons, have attracted much attention from chemists. These 1,4-zwitterions, which contain multiple reaction sites, have been successfully used in the synthesis of three- to eight-membered cyclic compounds over the last decade. In this review, we present the exciting progress made in the field of cyclization reactions of sulfur- and nitrogen-based pyridinium and quinolinium 1,4-zwitterions. Moreover, the mechanistic insights, the transition states, some synthetic applications, and the challenges and opportunities are also discussed. We hope to provide an overview for synthetic chemists who are interested in the heterocycle synthesis from cyclization reaction with pyridinium and quinolinium 1,4-zwitterions pyridinium and quinolinium 1,4-zwitterions.

Keywords: reaction; pyridinium quinolinium; quinolinium zwitterions; cyclization

Journal Title: Molecules
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.