LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Metal Complexing on Mn–Fe/TS-1 Catalysts for Selective Catalytic Reduction of NO with NH3

Photo from wikipedia

TS-1 zeolite with desirable pore structure, an abundance of acidic sites, and good thermal stability promising as a support for the selective catalytic reduction of NO with NH3 (NH3-SCR). Herein,… Click to show full abstract

TS-1 zeolite with desirable pore structure, an abundance of acidic sites, and good thermal stability promising as a support for the selective catalytic reduction of NO with NH3 (NH3-SCR). Herein, a series of Mn–Fe/TS-1 catalysts have been synthesized, adopting tetraethylenepentamine (TEPA) as a metal complexing agent using the one-pot hydrothermal method. The introduced TEPA can not only increase the loading of active components but also prompts the formation of a hierarchical structure through decreasing the size of TS-1 nanocrystals to produce intercrystalline mesopores during the hydrothermal crystallization process. The optimized Mn–Fe/TS-1(R-2) catalyst shows remarkable NH3-SCR performance. Moreover, it exhibits excellent resistance to H2O and SO2 at low temperatures. The characterization results indicate that Mn–Fe/TS-1(R-2) possesses abundant surface Mn4+ and Fe2+ and chemisorbed oxygen, strong reducibility, and a high Brønsted acid amount. For comparison, Mn–Fe/TiO2 displays a narrower active temperature window due to its poor thermostability.

Keywords: catalytic reduction; selective catalytic; metal complexing; reduction nh3

Journal Title: Molecules
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.