LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation of Polyoxometalate-Based Composite by Solidification of Highly Active Cobalt-Containing Polytungstate on Polymeric Ionic Liquid for the Efficient Isolation of Proteinase K

Photo by helenkainua from unsplash

A novel porous polyoxometalate (POM)-based composite (Co4PW–PDDVAC) was prepared via the solidification of water-soluble polytungstate (Co4PW) on the polymeric ionic liquid dimethyldodecyl-4-polyethylene benzyl ammonium chloride (PDDVAC) via a cation-exchange reaction.… Click to show full abstract

A novel porous polyoxometalate (POM)-based composite (Co4PW–PDDVAC) was prepared via the solidification of water-soluble polytungstate (Co4PW) on the polymeric ionic liquid dimethyldodecyl-4-polyethylene benzyl ammonium chloride (PDDVAC) via a cation-exchange reaction. The solidification was confirmed by EDS, SEM, FT-IR, TGA, and so on. The strong covalent coordination and hydrogen-bonding interaction between the highly active Co2+ of the Co4PW and the aspartic acid residues of proteinase K endowed the obtained Co4PW–PDDVAC composite with excellent proteinase K adsorption properties. Thermodynamic investigations indicate that the adsorption behavior of proteinase K was consistent with the linear Langmuir isothermal model, giving an adsorption capacity as high as 1428 mg g−1. The Co4PW–PDDVAC composite was applied in the selective isolation of highly active proteinase K from Tritirachium album Limber crude enzyme fluid.

Keywords: solidification; polymeric ionic; co4pw; highly active; based composite; proteinase

Journal Title: Molecules
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.