LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Microwave Rotational Electric Resonance (RER) Spectrum of Benzothiazole

Photo by ldxcreative from unsplash

The microwave spectra of benzothiazole were measured in the frequency range 2–26.5 GHz using a pulsed molecular jet Fourier transform microwave spectrometer. Hyperfine splittings arising from the quadrupole coupling of… Click to show full abstract

The microwave spectra of benzothiazole were measured in the frequency range 2–26.5 GHz using a pulsed molecular jet Fourier transform microwave spectrometer. Hyperfine splittings arising from the quadrupole coupling of the 14N nucleus were fully resolved and analyzed simultaneously with the rotational frequencies. In total, 194 and 92 hyperfine components of the main species and the 34S isotopologue, respectively, were measured and fitted to measurement accuracy using a semi-rigid rotor model supplemented by a Hamiltonian accounting for the 14N nuclear quadrupole coupling effect. Highly accurate rotational constants, centrifugal distortion constants, and 14N nuclear quadrupole coupling constants were deduced. A large number of method and basis set combinations were used to optimize the molecular geometry of benzothiazole, and the calculated rotational constants were compared with the experimentally determined constants in the course of a benchmarking effort. The similar value of the χcc quadrupole coupling constant when compared to other thiazole derivatives indicates only very small changes of the electronic environment at the nitrogen nucleus in these compounds. The small negative inertial defect of −0.056 uÅ2 hints that low-frequency out-of-plane vibrations are present in benzothiazole, similar to the observation for some other planar aromatic molecules.

Keywords: rotational electric; resonance rer; microwave rotational; quadrupole coupling; benzothiazole; electric resonance

Journal Title: Molecules
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.