LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Added-Value Compounds in Cork By-Products: Methods for Extraction, Identification, and Quantification of Compounds with Pharmaceutical and Cosmetic Interest

Photo from wikipedia

The growing threat of climatic crisis and fossil fuel extinction has caused a boom in sustainability trends. Consumer demand for so-called eco-friendly products has been steadily increasing, built upon the… Click to show full abstract

The growing threat of climatic crisis and fossil fuel extinction has caused a boom in sustainability trends. Consumer demand for so-called eco-friendly products has been steadily increasing, built upon the foundation of environmental protection and safeguarding for future generations. A natural product that has been used for centuries is cork, resulting from the outer bark of Quercus suber L. Currently, its major application is the production of cork stoppers for the wine industry, a process that, although considered sustainable, generates by-products in the form of cork powder, cork granulates, or waste such as black condensate, among others. These residues possess constituents of interest for the cosmetic and pharmaceutical industries, as they exhibit relevant bioactivities, such as anti-inflammatory, antimicrobial, and antioxidant. This interesting potential brings forth the need to develop methods for their extraction, isolation, identification, and quantification. The aim of this work is to describe the potential of cork by-products for the cosmetic and pharmaceutical industry and to assemble the available extraction, isolation, and analytical methods applied to cork by-products, as well the biological assays. To our knowledge, this compilation has never been done, and it opens new avenues for the development of new applications for cork by-products.

Keywords: cork; cork products; interest; methods extraction; identification quantification

Journal Title: Molecules
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.