The reaction of 3,3-diaminoacrylonitriles with DMAD and 1,2-dibenzoylacetylene was studied. It is shown that the direction of the reaction depends on the structure both of acetylene and of diaminoacrylonitrile. In… Click to show full abstract
The reaction of 3,3-diaminoacrylonitriles with DMAD and 1,2-dibenzoylacetylene was studied. It is shown that the direction of the reaction depends on the structure both of acetylene and of diaminoacrylonitrile. In the reaction of DMAD with acrylonitriles bearing a monosubstituted amidine group, 1-substituted 5-amino-2-oxo-pyrrole-3(2H)ylidenes are formed. On the other hand, a similar reaction of acrylonitriles containing the N,N-dialkylamidine group affords 1-NH-5-aminopyrroles. In both cases, pyrroles containing two exocyclic double bonds are formed in high yields. A radically different type of pyrroles containing one exocyclic C=C bond and sp3 hybrid carbon in the cycle is formed in reactions of 3,3-diaminoacrylonitriles with 1,2-diaroylacetylenes. As in reactions with DMAD, the interaction of 3,3-diaminoacrylonitriles with 1,2-dibenzoylacetylene can lead, depending on the structure of the amidine fragment, both to NH- and 1-substituted pyrroles. The formation of the obtained pyrrole derivatives is explained by the proposed mechanisms of the studied reactions.
               
Click one of the above tabs to view related content.