A porous geopolymer with adsorption and photocatalytic degradation functions was successfully developed by utilizing Ti-bearing blast furnace slag (TBBFS) as the raw material. The prepared porous geopolymers were characterized by… Click to show full abstract
A porous geopolymer with adsorption and photocatalytic degradation functions was successfully developed by utilizing Ti-bearing blast furnace slag (TBBFS) as the raw material. The prepared porous geopolymers were characterized by X-ray diffraction, scanning electron microscope, energy dispersive spectrometer, and Fourier transform infrared spectrum. Selective crystallization, water quenching, and natural cooling methods were employed to investigate the influences of these modifications on the applicability of TBBFS as a precursor for geopolymer synthesis. Water-quenched slag with amorphous content was prone to alkali dissolution, and the resulting geopolymer exhibited the highest adsorption capacity (97.18 mg/g) for methylene blue (MB) removal. Selective crystallization at 1400 °C generated a hybrid microstructure consisting of a non-cementitious CaTiO3 crystallization phase and a cementitious amorphous fraction. The retention of CaTiO3 in the final geopolymer enables a bifunctionality in adsorption–photodegradation. Particularly, the adsorption and photodegradation processes under various conditions were investigated. The superior removal efficiency for MB could be attributed to the synergistic effects between the geopolymer matrix and CaTiO3, leading to an enhancement in the formation of hydroxyl radicals. The conversion of TBBFS into porous geopolymer offers an efficient and straightforward solution for slag utilization and dye removal.
               
Click one of the above tabs to view related content.