LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation of a Series of Highly Efficient Porous Adsorbent PGMA-N Molecules and Its Application in the Co-Removal of Cu(II) and Sulfamethoxazole from Water

Photo by sickhews from unsplash

This paper presents a highly efficient porous adsorbent PGMA-N prepared through a series of amination reactions between polyglycidyl methacrylate (PGMA) and different polyamines. The obtained polymeric porous materials were characterized… Click to show full abstract

This paper presents a highly efficient porous adsorbent PGMA-N prepared through a series of amination reactions between polyglycidyl methacrylate (PGMA) and different polyamines. The obtained polymeric porous materials were characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), specific surface area test (BET), and elemental analysis (EA). Thereinto, the PGMA-EDA porous adsorbent exhibited excellent ability to synergistically remove Cu(II) ions and sulfamethoxazole from aqueous solutions. Moreover, we studied the effects of pH, contact time, temperature, and initial concentration of pollutants on the adsorption performance of the adsorbent. The experimental results showed that the adsorption process of Cu(II) followed the pseudo-second-order kinetic model and Langmuir isotherm. The maximum adsorption capacity of PGMA-EDA for Cu(II) ions was 0.794 mmol/g. These results indicate that PGMA-EDA porous adsorbent has great potential for application in treating wastewater coexisting with heavy metals and antibiotics.

Keywords: pgma; porous adsorbent; highly efficient; efficient porous; adsorbent pgma; adsorbent

Journal Title: Molecules
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.