LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Reliable Production System of Large Quantities of [13N]Ammonia for Multiple Human Injections

Photo from wikipedia

[13N]Ammonia is one of the most commonly used Positron Emission Tomography (PET) radiotracers in humans to assess myocardial perfusion and measure myocardial blood flow. Here, we report a reliable semi-automated… Click to show full abstract

[13N]Ammonia is one of the most commonly used Positron Emission Tomography (PET) radiotracers in humans to assess myocardial perfusion and measure myocardial blood flow. Here, we report a reliable semi-automated process to manufacture large quantities of [13N]ammonia in high purity by proton-irradiation of a 10 mM aqueous ethanol solution using an in-target process under aseptic conditions. Our simplified production system is based on two syringe driver units and an in-line anion-exchange purification for up to three consecutive productions of ~30 GBq (~800 mCi) (radiochemical yield = 69 ± 3% n.d.c) per day. The total manufacturing time, including purification, sterile filtration, reformulation, and quality control (QC) analyses performed before batch release, is approximately 11 min from the End of Bombardment (EOB). The drug product complies with FDA/USP specifications and is supplied in a multidose vial allowing for two doses per patient, two patients per batch (4 doses/batch) on two separate PET scanners simultaneously. After four years of use, this production system has proved to be easy to operate and maintain at low costs. Over the last four years, more than 1000 patients have been imaged using this simplified procedure, demonstrating its reliability for the routine production of large quantities of current Good Manufacturing Practices (cGMP)-compliant [13N]ammonia for human use.

Keywords: 13n ammonia; large quantities; production system; production; quantities 13n

Journal Title: Molecules
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.