LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

New Amphiphilic Imidazolium/Benzimidazolium Calix[4]arene Derivatives: Synthesis, Aggregation Behavior and Decoration of DPPC Vesicles for Suzuki Coupling in Aqueous Media

Photo by melocotonazo from unsplash

In this study, new types of amphiphilic calix[4]arene derivatives bearing N-alkyl/aryl imidazolium/benzimidazolium fragments were designed and synthesized by two step transformation: Regioselective Blanc chloromethylation of distal-di-O-butyl calix[4]arene and subsequent interaction… Click to show full abstract

In this study, new types of amphiphilic calix[4]arene derivatives bearing N-alkyl/aryl imidazolium/benzimidazolium fragments were designed and synthesized by two step transformation: Regioselective Blanc chloromethylation of distal-di-O-butyl calix[4]arene and subsequent interaction with N-Substituted imidazole/benzimidazole. Critical aggregation concentration (CAC) values were estimated using pyrene fluorescent probe. Obtained macrocycles were found to form submicron particles with electrokinetic potential +44–+57 mV in aqueous solution. For the first time it was found that amphiphilic calixarene causes the fast transformation of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) multilamellar vesicles into unilamellar ones and leads to the ordering of the lipid in membranes at the molar calixarene/DPPC ratio more than 0.07. In situ complexes of calixarene aggregates with Pd(OAc)2 were found to be active in Suzuki–Miyaura coupling of 1-bromo-4-nitrobenzene with phenylboronic acid in water. It was shown that bulky N-substituents of heterocycle decrease the catalytic activity of the aggregates. These result can be assigned to the inhibition effect of Pd(II) complex in situ formation by bulky substituents located on the aggregate surface. Embedding of the most active palladium N-heterocyclic carbene (NHC) complex with methylimidazolium headgroups into DPPC vesicles enhances its catalytic activity in Suzuki–Miyaura coupling.

Keywords: imidazolium benzimidazolium; calix arene; dppc vesicles; calix; arene derivatives

Journal Title: Nanomaterials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.