LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Plasma-Assisted Chemical Vapor Deposition of F-Doped MnO2 Nanostructures on Single Crystal Substrates

Photo from academic.microsoft.com

MnO2 nanostructures were fabricated by plasma assisted-chemical vapor deposition (PA-CVD) using a fluorinated diketonate diamine manganese complex, acting as single-source precursor for both Mn and F. The syntheses were performed… Click to show full abstract

MnO2 nanostructures were fabricated by plasma assisted-chemical vapor deposition (PA-CVD) using a fluorinated diketonate diamine manganese complex, acting as single-source precursor for both Mn and F. The syntheses were performed from Ar/O2 plasmas on MgAl2O4(100), YAlO3(010), and Y3Al5O12(100) single crystals at a growth temperature of 300 °C, in order to investigate the substrate influence on material chemico-physical properties. A detailed characterization through complementary analytical techniques highlighted the formation of highly pure and oriented F-doped systems, comprising the sole β-MnO2 polymorph and exhibiting an inherent oxygen deficiency. Optical absorption spectroscopy revealed the presence of an appreciable Vis-light harvesting, of interest in view of possible photocatalytic applications in pollutant degradation and hydrogen production. The used substrates directly affected the system structural features, as well as the resulting magnetic characteristics. In particular, magnetic force microscopy (MFM) measurements, sensitive to the out-of-plane magnetization component, highlighted the formation of spin domains and long-range magnetic ordering in the developed materials, with features dependent on the system morphology. These results open the door to future engineering of the present nanostructures as possible magnetic media for integration in data storage devices.

Keywords: chemical vapor; mno2 nanostructures; plasma assisted; vapor deposition; assisted chemical

Journal Title: Nanomaterials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.