In this paper, the Fe3+ doped rutile phase TiO2 nanotubes arrays (NTAs) were prepared in a low temperature water-assistant crystallization method. It is noteworthy that the Fe3+ doping hardly hinders… Click to show full abstract
In this paper, the Fe3+ doped rutile phase TiO2 nanotubes arrays (NTAs) were prepared in a low temperature water-assistant crystallization method. It is noteworthy that the Fe3+ doping hardly hinders either the crystallization of rutile TiO2 NTAs or the highly-ordered nanotubular morphologies. Moreover, Fe3+ did not form other compound impurities, which indicated that Fe3+ substitute Ti4+ into the lattice of TiO2. With the introduction of Fe3+, the light absorption range of TiO2 NTAs extends from the ultraviolet band to the visible light range. Photocatalytic testing results indicate that Fe3+ doped TiO2 NTAs can effectively improve the degradation rate of methyl orange aqueous solution in visible light, and the TiO2 NTAs with 0.2 mol/L Fe3+ doping exhibits the highest photocatalytic degradation efficiency.
               
Click one of the above tabs to view related content.