LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation of Fe3+ Doped High-ordered TiO2 Nanotubes Arrays with Visible Photocatalytic Activities

Photo from academic.microsoft.com

In this paper, the Fe3+ doped rutile phase TiO2 nanotubes arrays (NTAs) were prepared in a low temperature water-assistant crystallization method. It is noteworthy that the Fe3+ doping hardly hinders… Click to show full abstract

In this paper, the Fe3+ doped rutile phase TiO2 nanotubes arrays (NTAs) were prepared in a low temperature water-assistant crystallization method. It is noteworthy that the Fe3+ doping hardly hinders either the crystallization of rutile TiO2 NTAs or the highly-ordered nanotubular morphologies. Moreover, Fe3+ did not form other compound impurities, which indicated that Fe3+ substitute Ti4+ into the lattice of TiO2. With the introduction of Fe3+, the light absorption range of TiO2 NTAs extends from the ultraviolet band to the visible light range. Photocatalytic testing results indicate that Fe3+ doped TiO2 NTAs can effectively improve the degradation rate of methyl orange aqueous solution in visible light, and the TiO2 NTAs with 0.2 mol/L Fe3+ doping exhibits the highest photocatalytic degradation efficiency.

Keywords: tio2; tio2 ntas; fe3 doped; nanotubes arrays; fe3; tio2 nanotubes

Journal Title: Nanomaterials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.